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The Einstein Relation for Random Walks on Graphs
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This paper investigates the Einstein relation; the connection between the volume growth,
the resistance growth and the expected time a random walk needs to leave a ball on a
weighted graph. The Einstein relation is proved under different set of conditions. In the
simplest case it is shown under the volume doubling and time comparison principles.
This and the other set of conditions provide the basic framework for the study of (sub-)
diffusive behavior of the random walks on weighted graphs.
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1. INTRODUCTION

The study of diffusion dates back to Brown and Einstein. In one of his celebrated
works(7) Einstein gave an explicit formula for the expected value of the distance
traveled by a particle in a fluid,

E [d (X0, Xt )] =
√

Dt,

(where d(x, y) stands for the distance) and for the diffusion constant

D = kB T

6πηa
,

where η is the viscosity of the fluid and a is the radius of the (assumed spherical)
particle. For further historical remarks and explanation see Hughes.(11)

On typical fractals (cf.(3)) one finds

E [d (X0, Xt )] � t
1
β
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with an exponent β ≥ 2. Equivalently one can consider E (x, R) the mean of the
exit time TB(x,R) needed by the particle to leave the ball B = B (x, R) centered on
x of radius R. For many fractals (cf.(2,10)) this quantity grows polynomially with
β > 0 :

E (x, R) = E (TB |X0 = x) � Rβ.

This is the reason why the relation

β = α − γ (1.1)

is called the Einstein relation by Alexander and Orbach.(1) In (1.1) the exponent
β is the diffusion exponent (or walk dimension), α is the the fractal dimension,
governing the volume growth, and γ is the conductivity (or capacity) exponent
(exponent of the conductivity between of the surfaces of the annuli).

In the last two decades the sub-diffusive behavior of fractal spaces (see
Refs.(3,10) as starting references) was intensively studied. Two-sided heat kernel
estimates have been proved for particular fractals and for wide class of spaces and
graphs as well. In almost all the cases the mean exit time has been found to satisfy

E (x, R) � Rβ

and the Einstein relation is still in the heart of the matter. Here and in what follows
aξ � bξ means that there is a C > 1 such that C−1aξ ≤ bξ ≤ Caξ for all ξ.

The major challenge in the study of diffusion is to find connection between
geometric, analytic, spectral and other properties of the space and behavior of
diffusion.

In order to formulate the main topics of the present paper let us switch to the
discrete space and time situation, to random walks, which are known as excellent
models for diffusion. They exhibit almost all the interesting phenomena and the
theoretical difficulties, but some technical problems can be avoided by their usage.
It is well-known that for the simple symmetric nearest neighbor random walk Xn

on Z
d the expected value of the traversed distance at time n is

E (d (X0, Xn)) = cd
√

n, (1.2)

where d(x, y) is the shortest path graph distance in x, y ∈ Z
d . It is also well-known

that the mean exit time

E (x, R) = E (TB |X0 = x) = Cd R2 (1.3)

in perfect agreement with (1.2) .

It has been previously shown by the author(13) that (1.1) holds for a large
class of graphs. A more detailed picture can be obtained by considering the
resistance and volume growth properties. Let V (x, R) denote the volume of the
ball B(x, R) . Let ρ(x, r, R) denote the resistance of an annulus B(x, R)\B(x, r ),
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i.e. the resistance between the inner and outer surface and let v(x, r, R) denote the
volume of the annuli:

v = v(x, r, R) = V (x, R) − V (x, r ).

Recent studies (cf. Refs.(3,5,8,9,15)) show that the relevant form of the Einstein
relation (ER) is

E(x, 2R) � ρ(x, R, 2R)v(x, R, 2R). (1.4)

Our aim in the present paper is to give reasonable conditions for this relation
and show some further properties of the mean exit time which are essential in
the investigation of diffusion, in particularly to obtain heat kernel estimates. All
the theorems presented here are new, the multiplicative form of the Einstein
relation obtained is a significant improvement over (1.1) (cf.(13)). Similar estimates
for particular structures or under stronger conditions have been considered (cf.
refs.(2,3,5,10) and under stronger conditions by the author in(8,9,13−15) but to the
author’s best knowledge ther are no comparable results in this generality. The
imposed conditions seems to be strong and hard to check but recent studies(8,9,16,17)

show that the conditions not only sufficient but necessary for upper- and two-sided
heat kernel estimates. The Einstein relation provides a simple connection between
the members of the triplet of mass, resistance and mean exit time. Examples show
that without some natural restrictions any two of them are “independent” (cf.
Lemma 5.1, 5.2(2) and(3) references there). From physical point of view it seems
to natural to impose conditions on mass and resistance.

It is interesting that the conditions which proved to be most natural for the
Einstein relation are also those which provide conditions for the much deeper
study of the heat kernel. We hope that beyond the actual results the paper leads to
a better understanding of diffusion.

The structure of the paper is the following. Basic definitions are collected
in Sect 2 In the consecutive sections we gradually change the set of conditions.
The changes has two aspects. We start with a condition on the mean exit time
which might be challenged as input in the study the diffusion. In order to eliminate
this deficiency we replace this condition with a pair of conditions in Sec 6 which
reflect resistance properties. On the other hand the conditions will become more
and more restrictive to meet the needs of the heat kernel estimates. In particular
the strong assumption of the elliptic Harnack inequality is used.

Section 3 contains general inequalities and the first theorem on the Einstein
relation which is based mainly on regularity conditions imposed on the volume
growth and mean exit time. In Sect 4 a key observation is made on the growth of
the resistance if the elliptic Harnack inequality is satisfied. Sect 5, 6 and 7 provide
two more result on the Einstein relation under different conditions and several
further properties of the mean exit time are discussed. Sections 4 and 6 contains
several remarks and observations which provide an insight on the interplay of the
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used conditions and hopefully also leads to the better understanding of the nature
of the elliptic Harnack inequality.

2. BASIC DEFINITIONS

Let us consider a countable infinite connected graph �. A weight function
µx,y = µy,x > 0 is given on the edges x ∼ y. This weight induces a measure

µ(x) =
∑
y∼x

µx,y, µ(A) =
∑
y∈A

µ(y)

on the vertex set A ⊂ � and defines a reversible Markov chain Xn ∈ �, i.e. a
random walk on the weighted graph (�,µ) with transition probabilities

P(x, y) = µx,y

µ(x)
,

Pn(x, y) = P(Xn = y|X0 = x).

Definition 2.1. The weighted graph is equipped with the inner product: for
f, g ∈ c0 (�) (set of finitely supported functions over �)

( f, g) = ( f, g)µ =
∑

x

f (x) g (x) µ (x)

The graph is equipped with the usual (shortest path length) graph distance
d(x, y). Open metric balls centered on x ∈ �, of radius R > 0 are defined as

B(x, R) = {y ∈ � : d(x, y) < R},
the surface by

S(x, R) = {y ∈ � : d(x, y) = R}
and the µ-measure of an open ball is denoted by

V (x, R) = µ (B (x, R)) . (2.1)

Definition 2.2. The weighted graph has the volume doubling (VD) property if
there is a constant DV > 0 such that for all x ∈ � and R > 0

V (x, 2R) ≤ DV V (x, R). (2.2)

Definition 2.3. The bounded covering condition (BC) holds if there is an integer
K such that for all x ∈ �, R > 0 the ball B (x, 2R) can be covered by at most K
balls of radius R.
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Remark 2.1. It is well-known that volume doubling property implies the bounded
covering condition on graphs. (cf. Lemma 2.7 of Ref.(5).)

Notation 2.1. For a set A ⊂ � denote the closure by

A = {y ∈ � : there is an x ∈ A such that x ∼ y} .

The external boundary is defined as ∂ A = A\A.

Definition 2.4. We say that condition (p0) holds if there is a universal p0 > 0
such that for all x, y ∈ �, x ∼ y

µx,y

µ(x)
≥ p0. (2.3)

The next proposition is taken from ref.(8) (see also ref.(16))

Proposition 2.1. If (p0) holds, then, for all x, y ∈ � and R > 0 and for some
C > 1,

V (x, R) ≤ C Rµ(x), (2.4)

pd(x,y)
0 µ(y) ≤ µ(x) (2.5)

and for any x ∈ �

|{y : y ∼ x}| ≤ 1

p0
. (2.6)

Remark 2.4. It is easy to show (cf.(6)) that the volume doubling property im-
plies an anti-doubling property: there is a constant AV > 1 such that for all
x ∈ �, R > 0

2V (x, R) ≤ V (x, AV R). (2.7)

One can also show that (VD) is equivalent to

V (x, R)

V (y, S)
≤ C

(
R

S

)α

, (2.8)

where α = log2 DV ,d(x, y) ≤ R and the anti-doubling property (2.7) is equivalent
to the existence of c, α1 > 0 such that for all x ∈ �, R > S > 0

V (x, R)

V (x, S)
≥ c

(
R

S

)α1

. (2.9)
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Definition 2.5. We say that the weak volume comparison condition (wVC) holds
if here is a C > 1 such that for all x ∈ �, R > 0, y ∈ B (x, R)

V (x, R)

V (y, R)
≤ C. (2.10)

Remark 2.3. One can also easily verify that

(wV C) + (BC) ⇐⇒ (V D) .

2.1. The Mean Exit Time

Let us introduce the exit time TA.

Definition 2.6. The exit time from a set A is defined as

TA = min{k : Xk ∈ �\A},
its expected value is denoted by

Ez(A) = E(TA|X0 = z),

and let us use the short notation

Ez(x, R) = E(B(x, R)|X0 = z)

and A = B(x, R)

E(x, R) = Ex (x, R).

Definition 2.7. We will say that the weighted graph (�,µ) satisfies the time
comparison principle (TC) if there is a constant CT > 1 such that for all x ∈ �

and R > 0, y ∈ B (x, R)

E(x, 2R)

E (y, R)
≤ CT . (2.11)

Definition 2.8. We will say that (�,µ) has time doubling property (TD) if there
is a DT > 0 such that for all x ∈ � and R ≥ 0

E(x, 2R) ≤ DT E(x, R). (2.12)

Remark 2.4. It is clear that (T C) implies (T D) setting y = x .
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Remark 2.5. The time comparison principle evidently implies the following
weaker form of the time comparison principle (wTC): there is a C > 0 such that

E(x, R)

E(y, R)
≤ C (2.13)

for all x ∈ �, R > 0, y ∈ B (x, R) . One can observe that (2.13) is the difference
between (T C) and (T D) . It is easy to see that

(T C) ⇐⇒ (T D) + (wT C) .

Remark 2.6. From (T D) it follows that there are C > 0 and β > 0 such that for
all x ∈ � and R > S > 0

E(x, R)

E(x, S)
≤ C

(
R

S

)β

(2.14)

and (T C) is equivalent to

E(x, R)

E(y, S)
≤ C

(
R

S

)β

(2.15)

for any y ∈ B (x, R) . One can take that β = log2 CT . Later (cf. Corollary 3.5 and
3.14) we shall see that β ≥ 1 in general and β ≥ 2 under some natural conditions.

Definition 2.9. The maximal mean exit time is defined as

E(A) = max
x∈A

Ex (A),

in particular the notation E(x, R) = E(B(x, R)) will be used.

Definition 2.10. We introduce the condition (E) which means that there is a
constant C > 0 such that for all x ∈ �, R > 0

E(x, R) ≤ C E(x, R). (2.16)

Remark 2.7. One can see easily that

(T C) =⇒ (E).

2.2. The Laplace Operator

Definition 2.11. The random walk on the weighted graph is a reversible Markov
chain with respect to µ (x) and the Markov operator P is naturally defined by

P f (x) =
∑

P (x, y) f (y) .
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Definition 2.12. The Laplace operator on the weighted graph (�,µ) is defined
simply as


 = P − I.

Definition 2.13. For A ⊂ � consider P A, the restriction of the Markov operator
P to A. This operator is the Markov operator of the killed Markov chain, which is
killed on leaving A. Its iterates are denoted by P A

k .

Definition 2.14. The Laplace operator with Dirichlet boundary conditions on a
finite set A ⊂ � is defined as


A f (x) =
{


 f (x) if x ∈ A
0 i f x /∈ A

.

The smallest eigenvalue of −
A is denoted in general by λ(A) and for A = B(x, R)
it is denoted by λ(x, R) = λ(B(x, R)).

Definition 2.15. We introduce

G A(y, z) =
∞∑

k=0

P A
k (y, z)

the local Green function, the Green function of the killed walk and the correspond-
ing Green kernel as

g A(y, z) = 1

µ (z)
G A(y, z).

Remark 2.8. One can observe that the local Green function G A (x, y) is nothing
else than the expected number of visits of the site y by the killed walk starting on
x .

2.3. The Resistance

Definition 2.16. For any two disjoint sets, A, B ⊂ �, the resistance, ρ(A, B), is
defined as

ρ(A, B) = (inf{(
 f, f )µ : f |A = 1, f |B = 0})−1

and we introduce

ρ(x, r, R) = ρ(B(x, r ), �\B(x, R))

for the resistance of the annulus around x ∈ �, with R > r > 0.
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This formal definition is in full agreement with the natural physical interpre-
tation. If we consider the edges of the graph as wires of conductance wx,y the
graph forms an electric network. Then ρ(A, B) is the resistance (1/ρ(A, B) the
conductance ) which can be measured in the electric network if the two poles of a
power source are connected to the sets A and B.

3. BASIC INEQUALITIES

This section collects several known and some new inequalities which connect
volume, mean exit time, resistance and smallest eigenvalue of the Laplacian of
finite sets. We mainly work under the set of condition (p0) , (V D) and (T C) .

Alone these conditions are not enough strong to obtain on- and off-diagonal heat
kernel upper and off-diagonal lower bounds but imply the Einstein relation as the
following theorem shows and they are essential in the study of the heat kernel
(cf.(6,17)).

Theorem 3.1. (p0), (VD) and (TC) implies

λ−1 (x, 2R) � E (x, 2R) � E (x, 2R) � ρ (x, R, 2R) v (x, R, 2R) .

The proof is given via a series of statements.

Lemma 3.2. For all weighted graphs (�,µ) and for all finite sets A ⊂ B ⊂ �

the inequality

λ(B)ρ(A, �\B)µ(A) ≤ 1, (3.1)

holds, particularly

λ(x, 2R)ρ(x, R, 2R)V (x, R) ≤ 1. (3.2)

Proof. The reader is requested to consult Lemma 4.6.(14)

Lemma 3.3. For any finite set A ⊂ �

λ−1 (A) ≤ E (A) (3.3)

Proof. Please see Lemma 3.6 of.(15)

Lemma 3.4. On all (�,µ) for any x ∈ �, R > r > 0

E (x, R + r ) ≥ E (x, R) + min
y ∈ r (x,R)

E (y, r ) .
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Prrof. First let us observe that from the triangle inequality it follows that for any
y ∈ S (x, R)

B (y, r ) ⊂ B (x, R + r ) .

From this and from the strong Markov property one obtains that

E(x, R + r ) = Ex (TB + EXTB
(x, R + r ))

≥ E(x, R) + Ex (EXTB
(XTB , S)).

But XTB ∈ S (x, R) which gives the statement.

Corollary 3.5. The mean exit time E(x, R) for R ∈ N is strictly monotone and
has inverse e(x, n) : � × N → N

e (x, n) = min {R ∈ N : E (x, R) ≥ n} .

Proof. Simply let S = 1 in Lemma 3.4 and use that E (x, 1) ≥ 1.

Lemma 3.6. On all (�,µ) for any x ∈ A ⊂ �

Ex (TA) ≤ ρ ({x} , �\A) µ (A) .

Proof. This observation is well-known (cf.(13) Eq. (1.5) , or(2)) therefore we
give the proof in a concise form. Denote τy the first hitting time of y ∈ A and
F A y,= Py (τx < TA) ≤ 1 the hitting probability. Then

g A (x, y) = g A (y, x) = F A (y, x) g A (x, x)

≤ g A (x, x) = ρ ({x} , �\A) ,

where the last equality follows from the interpretation of the capacity potential
(cf.(2)). The mean exit time can be decomposed and estimated as follows

Ex (TA) =
∑
y ∈ A

G A (x, y) =
∑
y ∈ A

g A (x, y) µ (y)

≤ g A (x, x)
∑
y ∈ A

µ (y) = ρ ({x} , �\A) µ (A) .

Let A ⊂ �. We define a new graph �a, the graph which is obtained by
shrinking the set A into a single vertex a. The graph �a has the vertex set
�a = �\A ∪ {a} , where a is a new vertex. The edge set contains all edges x ∼ y
for x, y ∈ �\A and their weights unaltered µa

x,y = µx,y . There is an edge between
x ∈ �\A and a if there is a vertex y ∈ A for which x ∼ y and the weights are
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defined by µa
x,a = ∑

y∈A µx,y . The random walk on �a is defined as in general on
weighted graphs.

Corollary 3.7. For (�,µ) and for finite sets A ⊂ B ⊂ � consider (�a, µa) and
the corresponding random walk. Then

Ea (TB) ≤ ρ (A, �\B) µ (B\A) . (3.4)

Proof. The statement is an immediate consequence of Lemma 3.6.

Lemma 3.8. For (�,µ) for all x ∈ �, R > 0,

min
z∈∂ B(x, 3

2 R)
E (z, R/2) ≤ ρ (x, R, 2R) v (x, R, 2R) .

Proof. Consider the annulus D = B (x, 2R) \B (x, R). Apply Corollary 3.7 for
A = B (x, R) , B = B (x, 2R) to obtain

ρ (x, R, 2R) v (x, R, 2R) ≥ Ea (TB) . (3.5)

It is clear that the walk started in a and leaving B should cross ∂ B (x, 3/2R) . Now
we use the Markov property as in Lemma 3.4. Denote the first hitting (random)
point by ξ. Again evident that the walk continued from ξ should leave B

(
ξ, 1

2 R
)

before it leaves B (x, 2R) . This means that

ρ (x, R, 2R) v (x, R, 2R)

≥ Ea (TB) ≥ min
y∈∂ B(x, 3

2 R)
E

(
y,

1

2
R

)
.

Theorem 3.9. If (p0) , (V D) , (T C) hold then

E(x, 2R) � ρ(x, R, 2R)v(x, R, 2R). (3.6)

Proof of Theorem 3.9. Let us recall that

E(x, R) = max
z ∈ B(x,R)

Ez(x, R).

We start with the general inequalities (3.2) and (3.3) ;

ρ(x, R, 2R)V (x, R) ≤ λ−1(x, 2R) ≤ E(x, 2R) ≤ C E(x, 2R) (3.7)

where in the last step (T C) is used. For the upper estimate let us apply Lemma 3.8

ρ(x, R, 2R)V (x, 2R) ≥ min
y∈∂ B(x, 3

2 R)
E(y,

1

2
R).
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Finally from (T C) it follows that

ρ(x, R, 2R)v (x, R, 2R) ≥ cE(x, 2R).

Proof of Theorem 3.1. The combination of (3.6) and (3.7) gives the result.

Proposition 3.10. If (wT C) holds then anti-doubling property holds for
E (x, R) , which means that there is a constant A > 1 such that for all
x ∈ �, R > 0

E (x, AR) > 2E (x, R) . (3.8)

Proof. Consider any y ∈ S(x, 2R) and apply twice (wT C) to get

E(y, R) > cE(x, R).

Now again from the Markov property for the stopping time TB(x,3R) we obtain

E(x, 3R) > E(x, 2R) + min
y ∈ S(x,2R)

E(y, R) ≥ (1 + c)E(x, R)

and iterating this procedure a sufficient number of times we get the result.

Proposition 3.11. For all weighted graphs and for all finite sets with A ⊂ B ⊂ �

ρ(A, ∂ B)µ(B\A) ≥ d(A, ∂ B)2.

Proof. The proof follows the idea of Lemma 1 of ref.(13) Denote L = d(A, ∂ B),
and Si = {z ∈ B : d(A, z) = i}, S0 = A, SL = ∂ B and Ei = {(x, y) : x ∈ Si , y ∈
Si+1}, µ (Ei ) = (z,w)∈Ei µz,w. Using these conventions one obtains that

ρ(A, ∂ B) ≥
L−1∑
i=0

ρ(Si , Si+1) =
L−1∑
i=0

1

µ(Ei )
≥ L2∑L−1

i=0 µ(Ei )
.

This proposition has an interesting consequence.

Corollary 3.12. For all weighted graphs, if x ∈ �, R ≥ r ≥ 0, then

ρ(x, r, R)v(x, r, R) ≥ (R − r )2, (3.9)

Proof. The statement is immediate from Proposition 3.11.
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Proposition 3.13. If (p0) and (V D) hold then there is a c > 0 such that for all
x ∈ �, R > 0

λ−1(x, R) ≥ cR2.

Proof. The inequality follows from (3.2) , (3.9) and (VD) .

Corollary 3.14. If (p0),(V D) and (E) hold then there is a c > 0 such that for
all x ∈ �, R > 0

E(x, R) ≥ cR2. (3.10)

Proof. The statement follows easily from Lemma 3.3 and 3.13.

Remark 3.1. If one has the upper bound

E (x, R) ≤ C Rβ

for the mean exit time with a given β > 0 then (3.10) immediately implies

β ≥ 2.

Remark 3.2. Since (T C) =⇒ (E) we also have the implication (p0) , (VD),
(T C) =⇒ (3.10) .

4. THE HARNACK INEQUALITY AND THE GREEN KERNEL

In this section we study the relationship between the elliptic Harnack in-
equality (see Definition 4.2 below) and resistance properties of the graph. The
main results of this section (and in some extent of the paper as well) are Theo-
rem 4.6, Corollary 4.7 and 4.8. The section ends with several further remarks
which connect the constants and exponents popping up in the resistance, mean
exit time and volume estimates and contributes to the related observations given
in(3,16) Further studies in this direction may disclose the nature of the constant in
the elliptic Harnack inequality the “Harnack constant.”

Definition 4.1. A function h is harmonic on a set A ⊂ � if it is defined on A and

Ph (x) =
∑

y

P (x, y) h (y) = h (x)

for all x ∈ A.
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Definition 4.2. We say that the weighted graph (�,µ) satisfies the elliptic
Harnack inequality (H ) if, for all x ∈ �, R > 0 and for any non-negative har-
monic function u which is harmonic in B(x, 2R), the following inequality holds

max
B(x,R)

u ≤ H min
B(x,R)

u , (4.1)

with some constant H > 1 independent of x and R.

Remark 4.1. One can check easily that for any fixed R0 for all R < R0 the
Harnack inequality follows from (p0).

Definition 4.3. We say that (�,µ) satisfies (HG) the Harnack inequality for
Green functions if there is a C > 1, such that for all x ∈ � and R > 0 and for any
finite set U ⊃ B(x, 2R),

sup
y /∈B(x,R/2)

gU (x, y) ≤ C inf
z∈B(x,R)

gU (x, z). (HG)

For more concise treatment let us define two further inequalities which are
equivalent to (H G). There is a C > 1, such that for all x ∈ � and R > r > 0, if
B = B (x, 2R), then

sup
y /∈B(x,r/2)

gB(x, y) ≤ C inf
z∈B(x,r )

gB(x, z). (4.2)

There is a C > 1, such that for all x ∈ � and R > 0, if B = B (x, 2R), then

sup
y /∈B(x,R/2)

gB(x, y) ≤ C inf
z∈B(x,R)

gB(x, z). (4.3)

Proposition 4.1. Assume that (p0) holds on the graph (�,µ). Then

(H G) =⇒ (H ).

The proof can be found in(8) The next two propositions are Proposition 4.3
and 4.4 from(9)

Proposition 4.2. Assume that the graph (�,µ) satisfies (p0) and (HG). Then for
any ball B(x, R) and for any 0 < r ≤ R/2, we have

sup
y /∈B(x,r )

gB(x,R)(x, y) � ρ(B(x, r ), B(x, R)) � inf
y∈B(x,r )

gB(x,R)(x, y). (4.4)

Proposition 4.3. Assume that the graph (�,µ) satisfies (p0) and (H G). Fix any
ball B(x, r ) and denote Bk = B(x, 2kr ) for k = 0, 1, . . . Then for all integers
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n > m ≥ 0,

sup
y /∈Bm

gBn (x, y) �
n−1∑
k=m

ρ(Bk, Bk+1) � inf
y∈Bm

gBn (x, y). (4.5)

Proposition 4.4. Assume that (�,µ) satisfies (p0). Then

(H ) =⇒ (H G)

The proof uses an argument of [3] to deduce first a weaker version of (HG)
which in conjunction again with (H) gives (HG).

Lemma 4.5. If (�,µ) satisfies (p0) then (H G) , (4.2) , (4.3) and (4.4) are equiv-
alent.

Proof. It is immediate that (HG) =⇒ (4.2) =⇒ (4.3). From Proposition 4.2 we
have that (HG) =⇒ (4.4) and (4.4) =⇒ (4.2) is clear. The careful reading of [8,
Lemma 10.2] establishes that (4.3) =⇒ (H ) and (HG) follows by Proposition
4.4.

The main result if this section is the following.

Theorem 4.6. Assume that (�,µ) satisfies (p0) , (H ). Then

ρ(x, R, 4R) ≤ C2ρ(x, 2R, 4R), (4.6)

and if in addition (BC) holds then

ρ(x, R, 4R) ≤ C1ρ(x, R, 2R) (4.7)

where Ci > 1 are independent of x ∈ � and R ≥ 0.

Proof. Assume that (�,µ) satisfies (p0) , (H ). If R ≤ 16 the statements follows
from (p0) , so we assume that R > 16. The first statement is direct consequence
of (H ) and (4.4). Since � is connected there is a path from x to Bc (x, 4R) .

This path has intersection with S (x, R + 1) in y0 and with S (x, 2R − 1) in z0.

Along this path we can form a finite intersecting chain of balls B (xi , R/4) with
centers on the path starting with x0 = y0 and ending with xK = z0. It is clear that
x /∈ B (xi , R/2) ⊂ B (x, 4R) =: B hence gB(x,4R) (x, .) is harmonic in them and
Harnack inequality and the standard chaining argument can be used to obtain

gB (x, y0) ≤ CgB (x, z0) .
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Di
R

3/2R
5R

4R

Fig. 1. Connected components in B(x,4R)(x,3/2R).

Now using (4.4) twice it follows that

ρ (x, R, 4R) ≤ C inf
y ∈ B(x,R)

gB (x, y)

≤ CgB (x, y0) ≤ CgB (x, z0)

≤ C sup
z /∈ B(x,2R)

gB (x, z)

≤ Cρ (x, 2R, 4R) .

Let us prove ( 4.7). Let U = B(x, 5R), A = B(x, R), D = B(x, 4R)\B
(
x, 3

2 R
)
.

Consider the connected components of D, denote them by Di and Si (x, r ) =
S (x, r ) ∩ Di . From the bounded covering condition it follows that the number
of these components is bounded by K . Let �i = Di ∪ [B (x, 5R) \B (x, 4R)] ∪
B(x, 3

2 R). (see Fig. 1.) It is clear that

1

ρ(x, R, 2R)
≤

K∑
i=1

1

ρ(B (x, R) , Si (x, 2R))

≤ K

mini ρ(B (x, R) , Si (x, 2R))
.

Let us simply assume that the minimum is obtained for i = 1, so that

ρ(x, R, 4R)

ρ(x, R, 2R)
≤ K

ρ(B (x, R) , S1 (x, 4R))

ρ(B (x, R) , S1 (x, 2R))
. (4.8)

Let us consider the capacity potential u (y) between �\B (x, 5R) and B (x, R)
which is set zero on B (x, R) and u (w) = ρ(x, R, 5R) for w ∈ �\B (x, 5R). It
is clear that u (y) is harmonic in D. Our strategy then is the following. We
will compare potential values of u using the Harnack inequality along a chain
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of balls consisting again a bounded number of balls. Thanks to the bounded
covering property B (x, 5R) can be covered by a bounded number of balls of
radius r = R/16. We consider the subset of such balls which intersect with D1. If
Bi = B (oi , r ) is such a ball, it is clear that B (oi , 4r ) does not intersect B (x, R)
and �\B (x, 5R) and hence u is harmonic in B (oi , 4r ). First let y, y′ ∈ D1 and

π = π (y, y′) = {y0, y1, · · · yN = y′}
the shortest path connecting them.

Let us consider a minimal covering of the path by balls. Let us pick up the
ball B (oi , r ) of smallest index which contains y then fix the last point along the
path from y to y1 ∈ π (y, y′) which is in this ball and the next one, z1 which is
not. Now let us pick up the a ball with the smallest index B

(
o j , r

)
which covers

z1. From the triangular inequality

d (oi , z1) ≤ d (z1, y1) + 1 = r + 1

it follows that z1 ∈ B (oi , 2r ) if r ≥ 1, which means that the elliptic Harnack
inequality applied in B (oi , 4r ) and then in B

(
o j , 4r

)
implies that

u (y) ≤ Cu (z1) .

The procedure can be continued until either y′ is covered or all balls are used. Since
at least one new point is covered in each step and only unused balls are selected, the
procedure has no loop in it. Since we started with K balls which cover B (x, 5R)
this procedure does not end before y′ is covered. When y′ is covered of course
we are ready since at most K balls are used and K + 1 iterations should be made.
This means that

u (y) ≤ C K+1u
(
y′) . (4.9)

Let us apply this comparison for y, y′ ∈ S1 (x, 2R) then for z, z′ ∈ S1 (x, 4R).
From the maximum principle it follows that

min
y∈S(x,2R)

u (y) ≤ ρ (B (x, R) , S1 (x, 2R)) ≤ max
y∈S(x,2R)

u (y)

which together with (4.9) results that

ρ (B (x, R) , S1 (x, 2R)) � u (y)

for all y ∈ S1 (x, 2R). The same argument yields that

ρ (B (x, R) , S1 (x, 4R)) � u (z)

for all z ∈ S1 (x, 4R). Finally let us consider a ray from x to a z0 ∈ S1 (x, 4R) and
its intersection y0 with S1 (x, 2R). This ray gives the shortest path between y0 and
z0 and an other chaining gives that

ρ (B (x, R) , S1 (x, 4R)) � u (z0) � u (y0) � ρ (B (x, R) , S1 (x, 2R))
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which by (4.8) gives the statement.

Remark 4.2. In the rest of this section the constants C1, C2 refer to the fixed
constants of (4.6) and (4.7).

Corollary 4.7. Under the conditions of Theorem 4.6 the inequalities

ρ(x, 2R, 4R) ≤ (C1 − 1) ρ(x, R, 2R), (4.10)

ρ(x, R, 2R) ≤ (C2 − 1) ρ(x, 2R, 4R) (4.11)

and

1

C1 − 1
ρ(x, 2R, 4R) ≤ ρ(x, R, 2R) ≤ (C2 − 1) ρ(x, 2R, 4R) (4.12)

hold.

Proof. The first two statements follow in the same way from the easy observation
that

ρ(x, R, 4R) ≥ ρ(x, R, 2R) + ρ(x, 2R, 4R).

We end this section with some observations which might be interesting on
their own. Some consequences of (4.10) and (4.11) ( in fact consequences of the
elliptic Harnack inequality) are derived and bounds on the volume growth and the
mean exit time are deduced.

Remark 4.3. Let us observe that from (4.10) it follows that the graph is transient if
C1 < 2 and in this case (4.11) ensures that the decay is not faster than polynomial.
Similarly from (4.11) it follows that the graph is recurrent if C2 ≤ 2 and (4.10)
ensures that the resistance not increases faster then polynomial. It is clear from
(4.12) that

(C1 − 1) (C2 − 1) ≥ 1.

Remark 4.4. From the (p0),(4.10) and (4.11) one can obtain easily the following
inequalities.

ρ (x, R, 2R) ≤ Cρ (x, 1, 2) Rlog2(C1−1) ≤ C

µ (x)
Rlog2(C1−1), (4.13)

ρ (x, R, 2R) ≥ Cρ (x, 1, 2) R− log2(C2−1) ≥ c

µ (x)
R− log2(C2−1). (4.14)
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Remark 4.5. Barlow in ref.(3) proved that (p0) and the elliptic Harnack inequality
imply

|V (x, R)| ≤ CR1+θ (4.15)

where θ = log3 H and H is the constant in the Harnack inequality. The combina-
tion of Corollary 3.12 and (4.13) results a lower bound for the volume growth:

R2 ≤ (V (x, 2R) − V (x, R)) ρ (x, R, 2R) ≤ V (x, 2R)
C

µ (x)
Rlog2(C1−1),

and so (p0) + (H ) + (BC) implies a lower bound for V :

V (x, 2R) − V (x, R) ≥ cµ (x) R2−log2(C1−1). (4.16)

In particularly if V (x, R) ≤ CRα then

C1 ≥ 22−α + 1. (4.17)

Similarly by (H ) and (4.14)

E (x, 2R) ≥ cρ (x, R, 2R) V (x, R) ≥ cV (x, R) R− log2(C2−1) (4.18)

which means that (p0) + (H ) implies an upper bound for V :

V (x, R) ≤ CE (x, R) µ (x) Rlog2(C2−1)

Similarly to (4.17) we get

C2 ≥ 2α1−β + 1. (4.19)

if we assume that E (x, R) ≤ CRβ and V (x, R) ≥ cµ (x) Rα1 .

Remark 4.6. We can restate the above observations starting from (3.9) and using
(4.11) and (H ) .

R2 ≤ ρ (x, R, 2R) (V (x, 2R) − V (x, R))

≤ (C2 − 1) ρ (x, 2R, 4R) V (x, 2R)

≤ (C2 − 1) E (x, 4R) .

This means that (p0) + (H ) implies

E (x, R) ≥ cR2.

The next corollary highlights the connection between the volume growth and
resistance properties implied by the elliptic Harnack inequality. Particularly an
upper bound for the volume of a ball (similar to one given in(3)) is provided and
complemented with a lower bound.
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Corollary 4.8. Assume that (�,µ) satisfies (p0) and (H ) . Then there are con-
stants C, c > 0, C1, C2 > 1 and γ2 = log2 (C2 − 1) such that for all x ∈ �, R > 0

V (x, R) ≤ C E (x, R) µ (x) Rγ2

and

E (x, R) ≥ cR2.

In addition if (BC) is satisfied then there is a γ1 = log2 (C1 − 1) such that

V (x, 2R) ≥ cµ (x) R2−γ1 .

5. HARNACK GRAPHS

The notion of Harnack graphs was coined by Barlow (personal communi-
cation) some time ago in order to have a concise name for graphs which satisfy
the elliptic Harnack inequality. At that time the investigations were focused on
fractals and fractal like graphs in which the space-time scaling function was Rβ.

In this section we focus on graphs which on one hand satisfy the elliptic Harnack
inequality on the other hand satisfy the triplet (p0) , (VD) , (TC) already used in
Sect 2. The results of ref.(17) show that this set of conditions is strong enough
to obtain heat kernel estimates. The main result of this section is the following
theorem.

Theorem 5.1. If for a weighted graph (�,µ) the conditions (p0) , (VD) , (H )
and (wTC) hold then

E (x, 2R) � ρ (x, R, 2R) v (x, R, 2R) .

Proposition 5.2. If (p0) , (wT C) holds for (�,µ) then there is a C > 1 such that
for all x ∈ �, R > 0

E (x, 2R) ≤ Cρ (x, R, 5R) v (x, R, 5R) .

Proof. Let us consider the annulus D = B (x, 5R) \B (x, R). We apply Corol-
lary 3.7 for A = B (x, R) , B = B (x, 5R) to obtain

ρ (x, R, 5R) v (x, R, 5R) ≥ Ea (TB) .

Now we use the Markov property for the stopping time TB(x,3R). It is clear that the
walk started in B (x, R) and leaving B (x, 5R) should cross S (x, 3R) . Denote
the first hitting (random) point by ξ. It is also evident that the walk continued from
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ξ should leave B (ξ, 2R) before it leaves B (x, 5R). This means that

ρ (x, R, 5R) v (x, R, 5R)

≥ Ea (TB) ≥ min
y∈S(x,3R)

E (y, 2R)

≥ cE (x, 2R) ,

where the last inequality follows from the repeated use of (wTC) .

Proof of Theorem 5.1. The lower estimate is easy. Denote B = B (x, 2R). We
know that (H ) implies (HG) , (4.4) and consequently

E (x, 2R) =
∑
y ∈ B

G B (x, y) (5.1)

≥
∑

y ∈ B(x,R)

gB (x, y) µ (y)

≥ cρ (x, R, 2R) V (x, R)

≥ cρ (x, R, 2R) v (x, R, 2R) .

The upper estimate uses the fact that the Harnack inequality implies the doubling
property of the resistance. From Proposition 5.2 we have that

E (x, 2R) ≤ Cρ (x, R, 5R) v (x, R, 5R)

but (4.7) and volume doubling gives that

E (x, 2R) ≤ Cρ (x, R, 8R) v (x, R, 5R)

≤ Cρ (x, R, 2R) V (x, 5R)

≤ Cρ (x, R, 2R) v (x, R, 2R) .

The next lemma is weaker than the observation in Remark 4.6 but the proof
is so easy that we include it here.

Lemma 5.3. If for a weighted graph (�,µ) the conditions (p0) , (VD) , (H ) hold
then

E (x, R) ≥ cR2. (5.2)

Proof. As we have seen in (5.1)

E (x, R) ≥ cρ (x, R/2, R) v (x, R/2, R)

follows from the conditions and from (3.9) we obtain the statement.
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6. RESISTANCE CONDITION ON HARNACK GRAPHS

In order to receive a set of conditions which is based on volume and resistance
properties we collect the properties of the product of the functions ρ (x, R, 2R)
and v (x, R, 2R) . Under the new set of conditions the Einstein relation holds
again. This case has an interesting point. The proof relies on that the product ρv

satisfies the anti-doubling property. In this section we show that there are several
conditions equivalent to the anti-doubling property of ρv. At the end of the section
a concise condition on the local Green kernel is presented (cf. (6.7),(6.8) and (g))
which is equivalent to (ER) + (H ) provided the graphs satisfies (p0) and (VD) .

The two-sided bound on the local Green kernel used in (8,9) The new relation (g)
is joint generalization of them and leads to characterization of graphs having heat
kernel estimates of local type and parabolic Harnack inequalities (cf.(17)).

Let us start with an interesting observation. The anti-doubling property
of ρv follows from a stronger assumption, from the assumption (ρv):
ρ (x, R, 2R) v (x, R, 2R) is basically independent of the reference point x : that is
there is a C > 0 such that

ρ (x, R, 2R) v (x, R, 2R) � ρ (y, R, 2R) v (y, R, 2R) . (6.1)

Proposition 6.1. Assume that for (�,µ) (p0) , (VD) , (H ) and (ρv) hold. Then
there is an A = Aρv > 1 such that anti-doubling for ρv holds:

ρ (x, AR, 2AR) v (x, AR, 2AR) ≥ 2ρ (x, R, 2R) v (x, R, 2R) (6.2)

for all x ∈ �.

Proof. Assume that R > R0, otherwise the statement follows from (p0) . Let
A = B (x, R) , B = B (x, 2R) , D = B\A where R = 4kr for a r ≥ 1. Denote by
ξi the location of the first hit of ∂ B(x, (2 (k + i)) 2r ) for i = 0 . . . k − 1. First by
Corollary 3.7

wx (R) := ρ (x, R, 2R) v (x, R, 2R) ≥ Ea (TB)

It is evident that the exit time TB in �a satisfies

TB ≥
k − 1∑
i = 0

TB(ξi ,2r )

and consequently by (3.5)

Ea (TB) ≥
k − 1∑
i = 0

E (ξi , 2r ) .
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The terms on the r.h.s can be estimated using the (H ) as in (5.1) to obtain

Ea (TB) ≥
k − 1∑
i = 0

E (ξi , 2r )

≥
k − 1∑
i = 0

c min
z∈B

wz (r ) ≥ ckwx (r ) ,

where (ρv) was used in the last step. Finally choosing Aρv = k so that k ≥2/c we
get the statement.

Definition 6.1. We say that the condition (E) holds on � if

E (x, R) � E (y, R) . (6.3)

Remark 6.1. Let us observe that under the condition of Proposition 6.1 with
some increase of the number of iterations it follows that for the function

F (R) = inf
x∈�

ρ (x, R, 2R) v (x, R, 2R) ,

the anti-doubling property

F (AF R) ≥ 2F (R)

holds. Of course the same applies in the presence of (E) as a consequence of
Proposition 3.10.

Theorem 6.2. If for a weighted graph (�,µ) the conditions (p0) , (VD) , (H )
and (6.2) hold then

E (x, 2R) � ρ (x, R, 2R) v (x, R, 2R)

Proof. We assume that R > R0, otherwise the statement is consequence of (p0).
The lower estimate can be deduced as in (5.1). The upper estimate uses Proposition
4.3. Denote M ≥ Aρv, L = M2 fixed constants (Aρv is from Proposition 4.3),
Rk = Mk , Bk = B(x, Rk) and let n be the minimal integer so that LR < Rn . We
have

E(x, 2R) ≤ E(x, Rn) =
∑

y ∈ Bn

gBn (x, y)µ(y) (6.4)

=
∑
y ∈ B0

gBn (x, y)µ(y) +
n − 1∑
m = 0

∑
y ∈ Bm + 1\Bm

gBn (x, y)µ(y). (6.5)
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It follows from (p0) that the first term on the right hand side of (6.5)–the sum over
B0 – is majorized by a multiple of a similar sum over B1\B0, which is a part of
the second term. Estimating gBn by (4.5) we obtain

E (x, 2R) ≤ E(x, LR)

≤ C
n∑

m = 0

[
n∑

k = m

ρ(x, Rk, Rk + 1)

]
v (x, Rm, Rm + 1)

≤ C
n∑

k = 0

[
k∑

m = 0

v (x, Rm, Rm + 1)

]
ρ (x, Rk, Rk + 1)

≤ C
n∑

k = 0

ρ (x, Rk, Rk + 1) V (x, Rk + 1)

≤ C
n∑

k = 0

ρ (x, Rk, Rk + 1) v(x, Rk, Rk + 1).

Now we use the anti-doubling property of ρv which yields

≤ Cρ(Rn − 1, Rn)v (Rn − 1, Rn)
n∑

k = 0

2k − n

≤ Cρv (Rn − 2, Rn − 1) ≤ Cρv (x, R, LR) .

Corollary 6.3. If for a weighted graph (�,µ) the conditions (p0) , (V D), (H )
and (ρv) hold then

E (x, 2R) � ρ (x, R, 2R) v (x, R, 2R)

Proof. The statement is direct consequence of Proposition 6.1 and Theorem 6.2.

Remark 6.2. One can check that under (p0) , (V D), and (H )

(wTC) ⇐⇒ (ER) ⇐⇒ (TC) ⇐⇒ (6.2) . (6.6)

The main line of the proof is indicated in the following diagrams assuming (p0):

(6.2) + (VD) + (H) =⇒ (ER), (TD), (TC),
(
E

)
, (wTC) ,

follows from Proposition 6.2 and

(wTC) + (VD) + (H ) =⇒ (ER) , (TD) , (TC) ,
(
E

)
, (6.2) .

from Theorem (5.1).
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Definition 6.2. We introduce upper and lower bound for the Green ker-
nel. There are C, c > 0 such that for all x ∈ �, R > 0, B = B (x, 2R) , A =
B (x, R) B(x, R/2)

max
y ∈ A

gB (x, y) ≤ C
E (x, 2R)

V (x, R)
(6.7)

min
y ∈ A

gB (x, y) ≥ c
E (x, 2R)

V (x, R)
(6.8)

If both satisfied it will be referred by (g) .

Theorem 6.4. Assume that for a weighted graph (�,µ) the conditions (p0) , (VD)
hold. Then

(g) ⇔ (H ) + (ER)

Proof. It is clear that (6.7) + (6.8) =⇒ (4.3) which is equivalent to (HG) by
Lemma 4.5. We know by Proposition 4.1 that (HG) =⇒ (H ) and by Proposition
4.2 that (HG) implies (4.4) . We can use (4.4) + (6.8) to obtain

E (x, 2R) ≤ Cρ (x, R, 2R) v (x, R, 2R)

while the lower estimate follows from (4.4) + (6.7) , so we have (ER). The reverse
implication follows from the fact that (H ) =⇒ (HG) =⇒ (4.4) which can be
combined with (ER) to receive (g) .

Corollary 6.5. Assume that for a weighted graph (�,µ) the conditions
(p0) , (VD) hold. Then

(g) ⇐⇒ (H ) + (∗)

where (∗) can be any of the conditions in (6.6), in particular (∗) can be (6.2), the
anti-doubling property of ρv, or (wTC) .

Remark 6.3. One should note that (6.7) follows easily from the elliptic mean
value inequality (cf.(13)), but (6.8) is stronger than a reversed kind of anti-mean
value inequality.

7. THE STRONG ANTI-DOUBLING PROPERTY

The anti-doubling property has a stronger form (see below (7.5)), which is
essential for off-diagonal heat kernel lower bounds). It is equivalent to

ρ (x, R, 2R) v (x, R, 2R)

ρ (x, r, 2R) v (x, r, 2R)
≥ c

(
R

r

)β1

(7.1)
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for some c > 0, β1 > 1 and for all x ∈ �, R > r > 0. In this section we de-
duce (7.1) working under the assumption (p0) , (V D) and (H ) . We will see
that (7.1) or (7.5) follows if we assume that the graph is homogeneous with
respect to the function ρv in x ∈ �. This condition seems to be necessary
for the strong anti-doubling property but we can not prove or disprove the
necessity.

Lemma 7.1. If (E R) holds then the following anti-doubling properties are equiv-
alent (with different constants).
1. There is an A > 1 such that

E (x, AR) ≥ 2E (x, R) (7.2)

for all x, R.2. There is an A′ > 1 such that

ρ(x, A′ R, 2A′ R)v(x, A′ R, 2A′ R) ≥ 2ρ(x, R, 2R)v(x, R, 2R) (7.3)

for all x, R.

Proof. Let us apply (ER) and (7.2) iteratively. Set A′ = Ak for some k > 1

ρ(x, A′ R, 2A′ R)v(x, A′ R, 2A′ R)

≥ cE
(
x, A′ R

)
≥ c2k E (x, R)

≥ c2kc′ρ(x, R, 2R)v (x, R, 2R).

So if k = ⌈− log (cc′)
⌉

, A′ = 2k we receive (7.3). The reverse implication works
in the same way.

For the strong anti-doubling property of

F (R) = inf
x∈�

E (x, R) (7.4)

first we show that it is at least linear. We also note that (E) implies (wTC) .

The combination of (E) and (7.4) clearly gives that

E (x, R) � F (R) .

Lemma 7.2. If

E (x, R) � F (R)

then for all L ∈ N, R > 1

F (L R) ≥ LF (R) .
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Proof. Let us fix an x = xε,R for which

F(LR) + ε ≥ E(x, LR)

and use strong Markov property.

E(x, LR) ≥ E (x, (L − 1) R) + min
z ∈ ∂ B(x,(L−1)R)

E (z, R)

≥ · · · ≥ L min
z ∈ B(x,L R)

E (x, R) ≥ LF (R) .

Since ε was arbitrary we get the statement,

Proposition 7.3. If (p0), (V D) , (E) and (H ) hold then there are BF > AF > 1
such that for all R ≥ 1

F(AF R) ≥ BF F(R). (7.5)

Proof. The proof starts with a special choice of the reference point. We fix an
ε > 0 small constant, which will be chosen later. Assume that R ≥ 1 and assign
an x = xε,R ∈ � to ε and R satisfying

F(3R) + ε ≥ E(x, 3R).

Let us denote by τA the first hitting time of a set A = B (x, R) and denote B =
B (x, 3R) , D = B (s, 2R) . Also denote by ξ = XTD ∈ ∂ B(x, 2R) and split the
history of the walk according to TD . Using the strong Markov property E(x, 3R)
can be estimated from below by

E(x, 3R) ≥ E(x, 2R) + Ex (Eξ [TB ∧ τA])

+ E(I [TB > τA] (TB − τA))

≥ F(2R) + Ex (E (ξ, R))

+ Ex

[
I (TB > τA) Eξ (TB)

]
≥ 2F (R) + F (R)

+ Ex

[
I (TB > τA) Eξ (TB)

]
,

where in the last step Lemma 7.2 was used. The third term contains the sub-case
when the walk reaches ∂ B(x, 2R) then returns to A, before it leaves. Let us denote
this return site by ζ = Xk : k = min {i : TD < i, Xi ∈ A}. Using this we get

Ex [I (TB > τA) Eξ (TB)] = Ex

(
Pξ (TB > τA)))E(ζ, 2R)

)
≥ Ex

(
Pξ (TB > τA)F(2R)

) ≥ min
w∈∂ B(x,2R)

Pw(TB > τA)F(2R).



644 Telcs

The probability in the above expression can be estimated using the elliptic Harnack
inequality (as in Theorem 4.6) to get, that

min
w∈∂ B(x,2R)

Pw(TB > τA) ≥ c
ρ(2R, 3R)

ρ(R, 3R)
≥ c =: c0.

Now we have the inequality

F (3R) + ε ≥ 3F (R) + c0 F (2R)

≥ 3F (R) + c02F (R) ,

which means that if cF > 2ε
F(R) , i.e. ε ≤ 1

2 F(1)c0 the statement follows with AF =
3, BF = 3 + c0

2 .

Remark 7.1. One can, of course, formulate the strong anti-doubling property
for E (x, R) or for ρv with a slight increase of A, but it seems more natural to
state it for F.

Remark 7.2. It is also clear that F inherits from E or ρv that F (R) ≥ cR2.

8. LIST OF LETTERED CONDITIONS

Abbreviation Refers to definition Name
(BC) 2.3. bounded covering condition
(VD) (2.2) volume doubling property
(wVC) (2.10) weak volume comparison
(TC) (2.11) time comparison principle
(wTC) (2.13) weak time comparison
(TD) (2.12) time doubling
(ER) (1.4) Einstein relation
(ρv) , (E) (6.1) , (6.3) � is homogeneous w.r.t. to ρv or E
(p0) (2.3) controlled weights
(H ) (4.1) elliptic Harnack inequality
(E) (2.16) condition e-bar
(HG) (HG) Harnack inequality for g
(g) (6.8) + (6.7) bounds for g
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